2.00-2.50 (m, 9 H); MS m/e 124 (M⁺); semicarbazone, mp 216-217 °C. Anal. Calcd for $C_9H_{15}ON_3$: C, 59.64; H, 8.34; N, 23.19. Found: C, 59.65; H, 8.30; N, 23.17.

Preparation of &Lactones. &Lactones **1-9** were prepared by the Baeyer-Villiger oxidation of the corresponding ketones in two methods.

Procedure A. A solution of the ketone and a 20-fold excess of 30% aqueous hydrogen peroxide in acetic acid was stirred at room temperature, and the progress of the reaction was monitored by GLC. The solution **was** poured into water and extracted with ether, and the ether extract was washed with saturated sodium carbonate solution and brine and dried $(Na₂SO₄)$. The solvent was removed in vacuo, and the residue was distilled under reduced pressure. &Lactones **1-9** were obtained in 35-80% yields and purified by preparative GLC.15

Procedure B. A solution of the ketone and a 2.5-fold excess of 85% m-chloroperbenzoic acid (MCPBA) in chloroform was stirred at room temperature. The solution was washed with saturated sodium sulfite solution and water and dried (Na_2SO_4) . The products were isolated as described above (40-90%).

1: IR 1720 cm-'; NMR **6** 1.30-2.20 (m, 12 H), 2.30-2.50 (m, 2 H ; MS m/e 166 (M⁺), 138. Anal. Calcd for $\text{C}_{10}\text{H}_1\text{A}\text{O}_2$: C, 72.26; H, 8.49. Found: C, 71.90; H, 8.78.

2: IR 1720 cm-'; NMR **6** 1.00-2.15 (m, 14 H), 2.20-2.50 (m, 2 H); MS m/e 180 (M⁺), 152. Anal. Calcd for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.11; H, 9.13.

3: mp 34-36 "C; IR (KBr) 1720 cm-'; NMR **6** 1.20-2.20 (m, 16 H), 2.50-2.70 (m, 2 H); MS *m/e* 194 (M'), 166. Anal. Calcd for $C_{12}H_{18}O_2$: C, 74.19; H, 9.34. Found: C, 73.92; H, 9.44.

4: IR 1720 cm-'; NMR **6** 1.00-2.20 (m, 18 H), 2.50-2.70 (m, 2 H); MS m/e 208 (M⁺), 180. Anal. Calcd for C₁₃H₂₀O₂: C, 74.96; H, 9.68. Found: C, 74.70; H, 9.74.

5: IR 1720 cm-'; NMR **6** 1.50-2.80 (m, 9 H), 4.76 (q, 1 H); MS *m/e* 126 (M'), 98.

6: IR 1720 cm-'; NMR **6** 1.40 (s, 3 H), 1.40-2.50 (m, 9 H); MS m/e 141 (M⁺ + 1), 43. Anal. Calcd for C₈H₁₂O₂: C, 68.54; H, 8.63. Found: C, 68.31; H, 8.72.

7: IR 1720 cm-': NMR 6 1.24 **(s.** 3 H). 1.40-2.60 (m. 8 H). 4.32 $(q, 1 H)$; MS m/e 141 $(M^+ + 1)$, 99. Anal. Calcd for $C_8H_{12}O_2$: C, 68.54; H, 8.63. Found: C, 68.22; H, 8.77.

8: IR 1720 cm-'; NMR **6** 0.96 (s, 3 H), 1.14 **(s,** 3 H), 1.40-2.70 (m, 8 H); MS m/e 155 (M⁺ + 1), 126. Anal. Calcd for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 70.05; H, 9.25.

9: IR 1720 crn-'; NMR **6** 0.99 (t, **3** H), 1.12 (s, 3 H), 1.50-2.50 $(m, 10 \text{ H}); \text{MS } m/e$ 169 $(M^+ + 1), 140.$ Anal. Calcd for $C_{10}H_{16}O_2$ C, 71.39; H, 9.59. Found: C, 71.06; H, 9.98.

Thermal Rearrangement of &Lactones 1-9. (a) In Solution. A solution of the δ -lactone in o -dichlorobenzene was heated in a **sealed** tube at 240 "C for 72 h. After evaporation of the solvent in vacuo, the residue **was** analyzed by GLC (10% FFAP), and the γ -lactones were separated by column chromatography (SiO₂, 10%) ether-petroleum ether) and purified by preparative GLC. The results are summarized in Table I.

(b) In the Vapor Phase. A hexane solution of the δ -lactone **was** passed through a Pyrex column (80 cm) heated at **350** "C in nitrogen stream (contact time ca. 20 s) and collected in a dry ice-acetone trap. Similar workup as above gave a mixture of 6 and γ -lactones. The results are summarized in Table I.

10: IR 1765 cm-'; NMR **6** 0.10-0.90 (m, 4 H), 1.40-2.20 (m, 8 H), 2.20-2.50 (m, 2 H); MS m/e 166 (M⁺), 111. Anal. Calcd for $C_{10}H_{14}O_2$: C, 72.26; H, 8.49. Found: C, 71.88; H, 8.56.

11: mp 32-34 "C; IR 1765 cm-'; NMR 6 0.15-1.00 (m, **4** H), 1.2@-2.20 (m, 10 H), 2.30-2.50 (m, 2 H); MS m/e 180 (M'). Anal. Calcd for $C_{11}H_{16}O_2$: C, 73.30; H, 8.95. Found: C, 72.98; H, 9.03.

12: IR 1765 cm-'; NMR **6 0.10-1.00** (m, 4 H), 1.10-2.20 (m, 12 H), 2.30-2.60 (m, 2 H); MS *m/e* 194 (M'), 166. Anal. Calcd for C₁₂H₁₈O₂: C, 74.19; H, 9.34. Found: C, 74.33; H, 9.59.

13: IR 1765 cm-'; NMR **6** 0.10-1.10 (m, 4 H), 1.10-2.20 (m, 14 H), 2.30-2.60 (m, 2 H); MS *m/e* 208 (M'), **180.** Anal. Calcd for $C_{13}H_{20}O_2$: C, 74.96; H. 9.68. Found: C, 75.13; H, 9.56.

14: IR 1765 cm-'; NMR 6 0.49 (m, 2 H), 0.67 (t, 2 H), 1.10 (s, 3 H), 1.40 (s, 3 H), 1.80-2.60 (m, 4 H); MS m/e 155 (M⁺ + 1). Anal. Calcd for $C_9H_{14}O_2$: C, 70.10; H, 9.15. Found: C, 69.87; H, 9.27.

15: IR 1765 cm-l; NMR 6 0.25-0.68 (m, 4 H), 0.80 (t, 3 H), 1.40 (s, 3 H), 1.50 (9, 2 H), 1.80-2.60 (m, 4 H); MS *m/e* 169 (M+ + 1). Anal. Calcd for $C_{10}H_{16}O_2$: C, 71.39; H, 9.59. Found: C, 71.13; H 9.69

Registry No. 1, 68157-80-2; **2,** 68157-81-3; **3,** 68157-82-4; 4, 68157-83-5; **5,** 71221-74-4; 6,72331-80-7; 7,72331-81-8; 8,72331-82-9; **9,** 72331-83-0; **10,** 72331-84-1; 11, 68197-38-6; **12,** 72331-85-2; **13,** 72331-86-3; 14, 68157-84-6; **15,** 68157-85-7; **tetrahydro-3a,6a-ethano**lH,4H-pentalen-l-one, 5202-23-3; **hexahydro-3a,7a-ethano-lH**inden-1-one, 42540-17-0; **hexahydro-3a,8a-ethano-1H,4H-azulen-l**one, 70386-90-2; **octahydro-3a,9a-ethano-1H-cyclopentacyclooctan-**1-one, 70386-91-3; **bicyclo[3.2.0]heptan-2-one,** 29268-42-6; 1 **methylbicyclo[3.2.0]heptan-2-one,** 50459-43-3; 5-methylbicyclo- [3.2.01 heptan-2-one, 50459-35-3; **1,5-dimethylbicyclo[3.2.0]** heptan-2 one, 70386-92-4; **l-ethyl-5-methylbicyclo[3.2.0]heptan-2-one,** 72331- 87-4; **l-ethyl-5-methylbicyclo[3.2.0]heptan-2-one** semicarbazone, 72331-88-5; **2-ethyl-3-methylcyclopentenone,** 5682-72-4; 2-ethyl-3 methylcyclopentenone semicarbazone, 72331-89-6.

Alkaline Hydrolysis of 7,8-Dimethyl-l0-(formylmethyl)isoalloxazine. A Kinetic Study

Iqbal Ahmad and H. David C. Rapson

Department of Pharmacy, Chelsea College, University of London, London, England

Paul F. Heelis*' and Glyn 0. Phillips

School of Natural Sciences, North E. Wales Institute, Kelsterton College, Connah's Quay, Deeside, Clwyd, United Kingdom

Received October 23, 1979

7,8-Dimethyl-lO-(formylmethyl)isoalloxazine (1) is an important intermediate product in the photolysis of riboflavin $(2).²$ Marked changes in the distribution of Marked changes in the distribution of lumichrome **(3)** and lumiflavin **(4),** both major products of the photolysis of **2,** are known to occur in moving from neutral to alkaline media.3 **A** possible explanation lies in the alkaline hydrolysis of 1, formed initially in the photolysis of **2. A** previous study of the side-chain hydrolysis of 1 in the dark reported that 4 was the major product.⁴

In the present study, we report kinetic data on the dark hydrolysis of 1 in the pH range 9-12. It is shown that both **3** and **4** are major products and that their relative proportions are pH dependent.

Results and Discussion

The hydrolysis of 1^5 (10^{-4} M) was carried out in unbuffered solutions at various pH values at 25 ± 1 °C (pH

-
- (1) To whom correspondence should be addressed.

(2) E. C. Smith and D. E. Metzler, J. Am. Chem. Soc., 85, 3285 (1963).

(3) O. Warburg and W. Christian, *Naturwissenschaften*, 20, 980

(1932); P. Karrer, H. Solomon, K. S

(5) 1 was prepared **as** described previously by H. H. Fall and H. G. Petering, *J. Am. Chem. Soc.,* 78, 377 (1956).

⁽¹⁵⁾ In the cases of 2, 8, and 9, 10% of 11 and traces of 14 and 15 were also obtained, besides the respective δ -lactones. These may be derived from initially formed δ -lactones by the rearrangement.

Helu. Chim. Acta, 17, 1010 (1934). (4) **P. S.** Song, E. C. Smith, and D. E. Metzler, *J. Am. Chem. Soc.,* 87, 4181 (1965).

Figure 1. TLC plate (solvent system a), showing hydrolysis products at pHs 9 and 11, after $\sim 90\%$ hydrolysis. St = standards **of 1,3, and 4. All spots show yellow fluorescence under UV light, except 2 (light blue). The plate at pH 11 shows, in addition to** 1, 3, and 4, the unknown products $(R_f 0.24)$.

Figure 2. Concentrations $(\times 10^5 \text{ M})$ of 1, 3, and 4 as a function **of time during hydrolysis of 1 at pH 11.0.**

was maintained by the addition of 0.1 M NaOH). Examination of the solutions after about 90% hydrolysis by thin-layer chromatography (TLC) showed the presence of 1, **3,** and **4** only, in the pH range 9-10.5 (Figure 1). At pH values of 11 and above, some unidentified compounds were observed, in addition to **1,3,** and **4** (Figure 1). The R_t values (where comparable solvent systems were empfoyed) for these unknown compounds were similar to those of the ring-cleavage products of 10-methylisollaxazine, previously reported.6

The concentrations of **1, 3,** and **4** were determined as a function of time by a multicomponent spectroscopic assay procedure; an example is shown in Figure **2.** Typical spectra of the aqueous and "chloroform" layers (see Experimental Section) observed during hydrolysis are shown in Figure **3.** These spectra clearly show the absorption of a mixture of $3 (\lambda_{\text{max}} 356 \text{ nm})$ and $4 (\lambda_{\text{max}} 445 \text{ nm})$ in the "chloroform" layer, with **3** being the major component rather than 4 as suggested previously.⁴

The reaction was found to obey pseudo-first-order kinetics⁷ with respect to both the disappearance of 1 and the formation of **3** and **4.** The results can be rationalized on the basis of the kinetic scheme shown in Scheme I.

The pH dependence of the pseudo-first-order rate constant in Scheme I is shown in Figure **4.** Some bimolecular rate constants are also given in Table I. An inflection at

Figure 3. Absorption spectra of (A) the aqueous extracts (pH 2.0) and (B) the "chloroform" extracts' (pH 4.5) during the hydrolysis of 1 at pH 11.0. Times indicated are in minutes.

Figure 4. Plot of log k vs. pH for the hydrolysis of 1: (\bullet) 1, (O) **3,** *(0)* **4. k is equal to the pseudo-first-order rate constant of** disappearance of 1 (i.e., $k_1 + k_2$) and formation of 3 (k_1) and 4 $(k₂)$.

Table I. Second-Order Rate Constants (M-' s-') for the Disappearance of 1 (h') and the formation of 3

$(k,')$ and $4(k,')$				
ъH	k'	k.	k.	
9	0.40	0.348	0.068	
12	0.193	0.063	0.132	

 $pH \sim 10.5$ can be seen in Figure 4, for both the disappearance of 1 and the formation of 3 and 4. As the pK_a of 1 is approximately 10.1 ,⁸ this would indicate that the anion of **1** is somewhat less reactive than the neutral form. Finally, it may be pointed out that in the case of the anion

⁽⁶⁾ D. A. Wadke and D. E. Guttman, *J. Pharm.* **Sci., 56,1088 (1966).**

⁽⁷⁾ P. A. wadde and D. E. Guitman, J. Friam. Sct., 38, 1066 (1966).

i(7) Plots of log ([1]₀/(1]₁) vs. time and log ([3]_a – [3]₁) vs. time (sim-

ilarly for [4]) were found to be linear in the pH range 9-10.5. At **cleavage products in the aqueous phase.**

⁽⁸⁾ The pK_a of 1 was determined spectroscopically as previously described for $2;9$ while such measurements were complicated due to the **rapid hydrolysis of 1, an estimate of 10.1** * **0.3 was obtained. (9) E. J. Land and A.** J. **Swallow,** *Biochemistry,* **8, 2117 (1969).**

⁽¹⁰⁾ I. Ahmad, Ph.D. Thesis, University of London, 1968.

of **1,** the rate constant for the formation of **4** exceeds that for **3,** in contrast to the neutral form (Figure 4).

Experimental Section

A. Quantitative Analysis. A multicomponent spectrophotometric assay procedure was employed for the determinations of the concentrations of **1,3,** and **4.1°** The hydrolyzed solutions of **1** were buffered to pH **2** (where **1** is completely stable to further 3 and 4 . The chloroform extract was evaporated to dryness under reduced pressure and the residue redissolved in pH 4.5 acetate buffer. The concentrations of 3 and 4 were then determined by a two-component assay from the absorption at 356 and 445 nm. The concentration of **1** was determined, using the aqueous layer,

B. Thin-Layer Chromatography. TLC was carried out on 250-um cellulose plates (Whatman CC41) and the following solvent systems were used: (a) 50:30:2:18 1-butanol-1-propanol-acetic acid-water; (b) 40:1050 (organic phase) 1-butanol-acetic acidwater. TLC was also carried out on silica gel G (Merck) with 7020:lO 1-butanol-ethanol-water as the solvent system. Flavins were detected by their characteristic fluorescence emission under **UV (370** nm) excitation.

Registry **No.** 1, 4250-90-2; **3,** 1086-80-2; **4,** 1088-56-8.

Isolation and Structure **of** the Oxidized Diels-Alder Adducts **of** Certain Styrenes and 1,4-Naphthoquinone

Wayne **B.** Manning* and David J. Wilbur

National Cancer Institute, Frederick Cancer Research Center, Frederick, Maryland 21 701

Received June 11. 1979

The production of substituted benz[a]anthracene-7,12diones via the Diels-Alder reaction between styrenes and 1,4-naphthoquinones has been demonstrated.^{1} The two oxidation steps needed to furnish the benz[a] anthracene-7,12-diones from the Diels-Alder adducts would be "expected" to occur from the intermediates shown below as 1, la, and 2.

The type of isomerism of 1 to la has been well documented, 2 and spectral evidence has suggested this in the

~_____~ ~

case of the 4-chloro isomer.' The structure of the product of oxidation of 1 or la, however, was not determined. We felt the prolonged heating required to overcome the sluggish styrene reactivity made possible the rearrangement of 2 to the 5,6-dihydro isomer 2a.

After a toluene solution of 2,3-dimethoxystyrene, $31,4$ naphthoquinone, chloranil, and catalytic amounts of trichloroacetic acid* was heated at 105 "C for 2 weeks, the product mixture was chromatographed on a silica gel column (benzene/hexane gradient) to yield 5,6-dihydro-**3,4-dimethoxybenz[u]anthracene-7,12-dione (3;** mp 173-175 "C, 15%) and **3,4-dimethoxybenz[a]anthracene-**7,12-dione **(4;** mp 210-211 "C, 12%). Compound **4** was

identified by its mass spectrum, its IR spectrum, and its complex proton NMR spectrum,⁵ which exhibited a doublet $(\bar{J} = 9.7 \text{ Hz})$ at δ 9.49 for H_1^6 and lacked meta coupling $(J = 2 \text{ Hz})$. The absence of this meta coupling indicated substitution at the 3-position. Compound **3** was qualitatively identified by its mass spectrum and its proton NMR spectrum which showed an unresolved signal at *⁶* 2.9 whose integral corresponded to four protons. Treatment of compound **3** with oxygen in alcoholic KOH produced **4,** mp 210-211 "C.

When 3-methoxystyrene³ replaced 2,3-dimethoxystyrene under similar conditions, column chromatography **as** above afforded **5,6-dihydr0-3-methoxybenz[a]anthracene-7,12** dione **(5;** mp 148-149 "C, 21%) and 3-methoxybenz[a] anthracene-7,12-dione **[6;** mp 168-169 "C (lit.7 mp 169-169.5 "C), 19%]. Compound *5* was identified as a dihydro intermediate by its mass spectrum and its proton NMR spectrum which showed an unresolved four-proton resonance signal at **6** 2.78. Compound *5* was converted in oxygenated alcoholic KOH to **6,** mp 167.5-169.0 "C.

To determine the structure of the dihydro intermediates, **I3C** NMR spectra and off-resonance decoupled spectra were taken. Assignment of aromatic resonances was made by single-frequency decoupling. Proton **NMR** assignments used in the single-frequency decoupling experiments were based on published assignments in 9,10-anthraquinone⁵ and benz[a]anthracene-7,12-dione.⁶ Nonprotonated carbon resonances were identified by their lower intensity. Assignments are shown in Table I.

In both cases the structures such as 2 possess a methylene carbon and methine carbon while the 2a-like structures contain two methylene carbon atoms. The off-resonance multiplicities for the carbon atoms in the

0022-3263/80/1945-0733\$01.00/0

⁽¹⁾ Manning, W. B.; Tomaszewski, J. E.; Muschik, G. M.; Sato, R. I. J. *Org.* Chem. **1977,** *42,* 3465. Tomaszewski, J. E.; Manning, W. B.; Muschik, G. M. *Tetrahedron Lett.* **1977,** 971.

⁽²⁾ An early investigation that demonstrated that this isomerization could occur thermally is described by: Bergmann, E.; Bergmann, F. J.

org. Chem. **1939, 3,** 125. (3) Tagaki, W.; Inoue, I.; Yano, Y.; Okonogi, T. *Tetrahedron Lett.* **1974,** 248?.

^{618.} (4) Suggested by the fine work of: Wasserman, A. *J. Chem. Soc.* 1942,

⁽⁵⁾ The chemical shifts of **Hg,** Hg. Hlo, and HI, are based on published assignments in substituted 9,lO-anthraquinones found in: Arnone, A.; Fronz, G.; Mondelli, R. *J.* Magn. *Reson.* **1977, 26, 69.**

⁽⁶⁾ Brown, P. M.; Thomson, R. H. *J. Chem.* Soc., *Perkin Trans. 1* **1976,** 997.

⁽⁷⁾ Muschik, G. M.; Tomaszewski, J. E.; Sato, R. I.; Manning, W. B. *J.* Org. Chem. **1979,** *44,* 2150.